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MECCANICA DEL CONTINUO

A Finite Difference Approach to Linear
Continuum Dynamics as Wave Propagation
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Abstract. Any elastic dynamic phenomenon in continuous, non-
bounded, homogeneous and isotropic media without external field
forces has the nature of spherical wave propagations. There are only
two kinds of spherical waves with different propagation speeds. At each
time is always possible to separate the motion in two components,
propagating respectively in the two kinds of waves. The motion at a
point at a given time depends on the motions of the two kinds of waves
at a previous time on the surfaces of two conventional spheres having
as radii the distances travelled respectively by the two spherical waves.
One can consider the influence of the sphere on its centre. A discretized
solution by means of a finite difference approach is proposed, where a
cubic network allows us to consider each point as the centre of various
spheres having as radii multiples of the cube diagonal. Obviously the
boundary of the volume interested with the dynamic phenomena, in
order to have consistency of the approach, must be composed by points
of the network, having in such a case the meaning of representative
points of discretized areas. The presence of the boundary makes non-
applicable, or in any case non-sufficient, in these regions the property
of the wave propagtions. Algorithms are presented in a shape including
both field relations and boundary ones, where time variable restraint
locations are included.

Key words. continuous dynamics; spherical propagation;
discretization; finite differences; irrotational; solenoidal; boundary
conditions.

Riassunto. Ogni fenomeno dinamico elastico in un mezzo continuo,
nor limitato, omogeneo e isotropo in assenza di forze esterne ha la
natura di propagazioni per onde sferiche. Ci sono solo due tipi di onde
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sferiche aventi differenti velocita di propagazione. In ogni istante é
sempre possibile suddividere lo stato di moto in due componenti,
propagantisi rispettivamente nei due tipi di onde. Il moto in un punto a
un certo tempo dipende dai moti dei due tipi di onde a un tempo
precedente su due superfici sferiche aventi raggi pari alle distanze
coperte dalle due onde sferiche. E possibile considerare ['influenza di
una superficie sferica sul proprio centro. Una soluzione discretizzata
per mezzo di differenze finite viene proposta: un reticolo cubico
consente di considerare ogni suo punto quale centro di sfere aventi
raggi multipli della diagonale del cubo. Ovviamente il contorno del
volume interessato dal fenomeno dinamico, affinché I’approccio sia
consistente, deve essere composto da punti del reticolo, aventi in questo
caso il significato di punti rappresentativi di volumi discretizzati. La
presenza del contorno rende non applicabile, o in ogni caso non
sufficiente, in tali regioni la proprieta delle propagazioni ondose.
Vengono proposti algoritmi in una forma includente sia le equazioni di
campo sia le condizioni al contorno, ivi comprese condizioni aventi
ubicazione variabile nel tempo.

1. Introduction

The aim of this paper is to give a foundamental contribution to the
solution of dynamic problems in continuous, homogeneous and isotropic
media on the basis of the wave propagation nature of such phenomena, in
particular with the scope of solving three dimensional dynamic problems
with time variable restraint location. In previous papers the A. considered
the behaviour of a bar (unidimensional elastic non-dispersive system) having
time dependent location of the boundary conditions. More exactly, the case
was considered of a time moving section which separates the bar into a
region at rest and a region where elastic waves can run along both the two
opposite directions. In particular “the reflection” of a wave running in the
same direction of the translation speed of the moving section was analysed;
the conclusion was that, if u; is the speed of the disturbancy (running at the
sound speed c) and v is the speed of the location of the restraint section, the
speed of the reflected wave is, [2]:

c—Vv
U =-u >
c+v

where one can see analogies with the Doppler effect. The analysis was
extended, [5]:
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e to the negative values of v (the restraint section moves in opposite
direction with respect to the propagation speed),
to the case of time depending amplitude of the travelling wave,
to the case of time depending speed of the boundary condition,
to the case where the propagation speed is depending on the longitudinal
position.

The one-dimensional system analysis has evidenced the travelling wave
nature of the dynamic behaviour as the key aspect for the solution of time
variable restraint problems. As three dimensional problems are concerned,
this paper is an attempt of solving the problem of time variable restraint
location by means of well known properties of the dynamic phenomena.
Mathematical physics shows the nature of wave propagations of every
elastic dynamic phenomenon in continuous, homogeneous and isotropic
media, without external force field, analysed by means of linear equations in
three-dimensional space. On the whole, involved waves are of two kinds,
with two propagation speeds, respectively; then we have two characteristic
propagations. In particular, this point of view allows to mean the
characteristics of motion, at a given time, at each point, in function of the
only characteristics at a previous time, on a spherical surface with a radius
depending on the wave kind and with its centre placed in the concerned
point. Therefore, “two spheres of influence” are singled out for each point.
In other words, mathematical physics introduces theories allowing to follow
the time evolution of dynamic phenomena as wave propagation phenomena.

2. Linear Continuum Dynamics as Wave Propagations

Persico, [1], has elegantly treated the problem, and we shall follow his
analysis in order to present a basis for a clear understanding of the
discretization proposed in the present paper. Except for external forces, the
linearized equations of dynamics of elastic, homogeneous and isotropic
bodies, are summarized in the vectorial field equation’ [1]:

2
k%—(ﬂﬂu)graddivs-,uAs:O, €))

where s is the displacement, k£ is the density and A, u are the Lamé’s
constants.

When applied to a function (or vector) function A is the Lapace’s operator.
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Following such a field equation, every dynamic phenomenon can be
considered as the propagation of phenomena of two foundamental kinds. It
comes from the chance to make® always the decomposition:

s=8;+8>, where rots;=0 and divs,=0,
where s, is an irrotational displacement and s, is a solenoidal one.
First, the case s;, where there exists a scalar ¢ such that s, = grad ¢, gives:
grad divs; = grad div grad ¢ = As;.
Thus, Eq. 1 becomes [1]:

%, ,
k 87 —()l«+2ﬂ) As; =0 (1"
or:
2
% - 2Asl =0 (a = 1/“72’”), (1’ rep),

that is a D’Alembert equation, satisfied by every propagation of wave
surfaces, travelling on perpendicularly (in normal direction to the surface
itself) with speed a.

In the case of s,, where divs, =0, [1]:

d’s,

or?

2
%:Tz—bzAsFo {b - \/%] (1” rep)

that is, again, a D’ Alembert equation, for which wave surfaces propagate
with speed b. If it is considered the case of a displacement s, sum of an
irrotational displacement s; , - i.e. a particular solution of Eq. 1’ - , and a
solenoidal one s, , - i.e. a particular solution of Eq. 1’ -, it results to be a
particular solution of Eq. 1 because of its linearity. So, the nature of
dynamic phenomena as “sum of propagation phenomena” can be stated, as
regards field equations.

— HAs; =0 17)

or:

Owing to Clebsch’s theorem
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In another way, beside the quoted Author, [1], we can explain here such
a decomposition taking into account, for example, Eq. 1°.
2
S
or’

The vector results irrotational like s, . In fact:
2
S
rot—- = a’rotAs,
ot

where in the second member one can invert between them rot and A, getting:

Thus, the irrotational component s; raises irrotational accelerations.
These ones, in a time interval df, raise the irrotational speed increases
a5

ot

Similar considerations, that we leave to the reader, can be made for Eq.
17, for which solenoidal displacements raise accelerations and solenoidal
speed increases.

Therefore, among irrotational phenomena and solenoidal ones, there is a
separation: the first ones don’t generate the other ones. Thus, in a well

os
posed problem where one gives initial values of s and of — , both these

vectorial fields can be decomposed in irrotational parts and solenoidal ones
to make two separated problems, as regards field equations. On the contrary,
such two behaviours are not separated because of the boundary conditions,
where waves of one kind can raise waves of the other kind.

3. Oscillations of Any Kind

Following again Persico, [1], the most general kind of oscillation can be
easily led back to a combination of two cases, decomposing the concerned
displacement s as sum of two displacements s; and s,, an irrotational one
and a solenoidal one. And this is always possible: in fact we can always
determine such a function @ that™:

3
Look at Eq. 2: it’s the well known Poisson’s equation and of this one we know the integral:
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Ap= divs. 2)
It follows that:
div (s - grad ¢ ) =0,
then we can find such a vector  that:
s - grad p=rot Q.
Thus, it’s sufficient to take
sy =grad 9 and s;=rot Q,

because s; results irrotational and s, is solenoidal. So, one can see that the
most general kind of oscillation is given by the superimposition of two kinds
of investigated waves. And, usually, except for particular cases, two kind of
waves are presented simultaneously (moreover, the reflection of waves of
one kind can also create waves of the other kind). In this connection, we
have to add that along the surface of the elastic body, only waves
concerning the superficial layer can propagate (Rayleigh’s waves). They
propagate with a different speed from a and b and are produced in the
reflection of the waves of the above investigated kind .

4. General Properties of Wave Equation

Always following Persico, [1], the equation that rules elastic oscillations
is written in the following shape* [1]:

2
ay=52L, 3)
o = _LJ’ divps s
dr ¢ r
4 Eq. 3, using the symbol (by D’ Alembert):
L1
Ao

is often written: y=0.
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where y can be identified as anyone of the displacement components (or as
the “potential of displacements” ¢, or as a component of ), and ¢ as a or
b.

Particular solutions represent plane waves or spheric ones and c is the
propagation speed. But Eq. 3 allows much more general solutions.

Solutions written in the shape, [1]:

y=Axy2)F{&yz-c 4)

are particularly important and Eq. 4 represents a more general shape of wave
propagation. In this one, the mains solutions are included: for4 = I/, f=1=
x, F is arbitrary and one has plane waves, parallel to the plane (y, z); for 4 =
I/r,f=%xr, Fis arbitrary and one has spheric waves. The surfaces f (x, y,
z) = const. are called “wave surfaces” and their normal paths are called
“radii”. Generally the elastic displacement s has an arbitrary trend with
respect to the radius: “longitudinal” and “transverse” waves are only
particular cases. A general property of every (regular) solution of Eq. 3 is
the generalization of the “mean value theorem” for harmonic functions.

Let us consider an arbitrary point P and plot a sphere o with centre P and
radius .
The mean value of y on surface oat time ¢ :

1
vrD= d
A 4m2£“’°

using polar co-ordinates , 6, ¢ of pole P, and putting briefly sinf d6@ dp = dw
so that do= r’da (then, dewrepresents the element of solid corner) becomes:

— 1
V0= [ vdw

(the double integral must be meant extending from O to 27 for ¢ and from O
to rfor 6).
From Eq. 3 we get the differential equation for ¥/, [1]:

F(ry)_1 2(ry)

or? v or?

Then, the function (in » and ¢ ) “r Y ” satisfies the equation of vibrating
string. From this one we can find a notable formula, due to Poisson, that
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gives the general solution of Eq. 3 (supposed right in an unlimited space),
v
ot

when the initial values ¥, and ¥, of ¥ and of are given in all the

space, [1]:
- dr -
Wo() = 17, (ct) + E[two(ct)], 5)

A7}
t

where the subscript o, means “at zero time” and the argument in the

R.S.M. is a distance r from the origin, divided by c.

The symbol '1/7 means:

- 0 _ 1 9 1
= — = —_— d _ e
V=o V= o= —=]

) (o}

Iy
—d
ot o

In order to know the value of ¥ in P at a general time #, only the mean
values, upon a sphere with centre P and radius ct, of the given functions ¥
and ¥/, are used. It means that only initial conditions of the medium in
points, far cf from P, affect the condition of the medium in P at time ¢. These
results of mathematical physics that we have derived from the clear
presentation of Persico, [1], will be used here as fundaments for a proposal
of discretization. Eq. 5 is here used in attempt to make the time discrete, for
which we can consider increases’ Az, getting:

Y (AD) = At (cAD + 7, (cAD), (6)

where each step Af of the L.S.M. start from a time t = 0, where ¥/, and 1/70
of the R.S.M. are calculated.
Equation (6) is coherente with the approximation:

di_ . 10 (ct)‘
—lw(en]= —

At
0

It is possible to introduce other approximations, as, for example:

‘When applied to the time, t, A means interval.
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ty, (Ct)ﬁ)m
20T

n

de_
;,;[n/fo (c1)]

giving different algoritms from that indicated in the present paper, whose
scope is only to verify the possibility of finite difference algoritms.

In this equation c takes value a or b whenever irrotational phenomenon
or solenoidal one are considered. Quantity cAt is a distance. The central idea
to make the space discrete, or to single out the “nodes”, is represented by
making cAt as a distance which allows to go from node to node either with
c=a or with c=b.

Eq. 5 appears as the foundamental tool for taking into account all the
implications of field equation in a way that allows to procede by steps in
time. As boundaries are concerned, this work is an attempt to take into
account their effects, including them step by step into the field behaviour
described by Eq. 5.

5. Discretization of the Analysis

The scope of this paragraph and of the following one’s, is only to verify
the possibility of algoritms of finite difference type, capable of utilize the
propagation nature of the dynamic behaviour of continuous homogeneus
media. A cubic reticulum (fig. 1) shows, for each examinated point, eight
points (making a centred cube) that belong to a sphere with radius equal to
every entire multiple of the reticulum semidiagonal. If the radii of the
spheres of influence are known, we could find such a reticulum that such
two radii result both multiplies (in case, in an approximative way) of the
diagonal or, in another approach, adopt the greater of the two radii as
diagonal of the cube and interpolate on the diagonals in order to have points
whose distance from the centre is equal to the smaller one. In such a way,
making every sphere discrete with its eight points, one can try to follow the
evolution of each dynamic phenomenon.

At each time, the state must be decomposed in two characteristic
propagation components. Then, we calculate the state at a following time
(for discrete intervals). The procedure is repeatedly applied to this new state.
Let us define the following symbols:

x,y,z = orthogonal cartesian axes,

P;;x = points making a cubic reticulum on x,y,z, with cubes with diagonal d =
aAt and side [ = aAt/\/3, where 1,j,k take entire values (Pyjx=P (x;,yj,z1)),
f(x,y,z,t) = function of space and time,
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fijx () = value of f (x,y,z,f) in Pyj; at time £, s (x,),zf) = time function
vectorial field, meaning displacements,

$ (x,y,z,1) = time function vectorial field, meaning speeds (coupled with s),
4,v,z = components of s.

OA=0B=0C=0D=0A"=0B’ =0C=0D’ = aAt

OA*=OB*=0C*=0D*=0A™=0B*=0C*=0D*=hA*
O=P (xi,)j,2zx)

A
z
D C (i-1,j+1, k+1)
A \ ; | C* (%, Vites Z ke2)
I~ 2] ST
>
i<
@/Aa\
P c
/ D 17
X &«
A

B’ (i+1, j+1, k-1)

Figure 1
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Let us write the sequence (order is not important) of points P(xi, ¥z,
Zisz), €ight at all, with ms;;,, where signs * of sub index are taken only once,
for fixed i,j,k. Moreover, £ = 1 for irrotational phenomena and & = b/a for
the solenoidal ones. Let us write with njj, the set of points Pij«x-, where
i*j* k*# 1,j,k, and i* =1+ Qa+1),j*=j £ 2B+1), k*=k £ 2y1) with o, B, y=0, 1,
2.

Table 1- Discretization of divergence calculation

Differential Discretized
(div S)ijk =
Uis1jk - Ui-1jk
. du dv ow A
divs=—+—+— 21
ox dy oz
Vij+1k - Vij1k
21
Wijk+1 =~ Wijk-1
21
Table 2- Discretization of Poisson’s integral
Differential Discretized
1 div,s L) 3
¢ = _——J dg ¢I’J’k B 47[ n r * * *
4Ty r kit k
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Table 3- Discretization of calculation of irrotational component

Differential Discretized

Urjjx= Pirljk - Pitjk

21
s; =grad @

Vijjx=Pijk - Pijrk

21

Wiijx=Pijks1 - Pijk-1
2]

Table 4- Discretization of calculation of solenoidal component

Differential Discretized

Up 0= Uik = Un
s;=s-grad ¢ vy =y
2 ijk — ijk 1 ij.k

Wy ijk = wi,jAk - Wi ijk

Table 5- Discretization of derivation

Differential Discretized

t =t + At

F . .
g =f f,-,j,k (ter) = f,-,j,k (t)+2

(r=0,1,2,..=)

At
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Table 6- Discretization of propagation effect

Differential Discretized

l//i,j,k(+At)=AtZ %XX

Wn+AL) =207, (cAi)+ | (CA Y (Xisg, Yz, Zisz) +

T2 Tty
where
(Xt Viess Zred) = fij it

+ é(fiil,jil,k:tl -fiiK)

6. Initial Condition

One takes an arbitrary initial condition # = #0) = O in the shape of
arbitrary values u;y , v ijx , Wijk , provided that the boundary conditions are
satisfied, and (for example) of null values for #i;x, vijx, Wijk-

7. Sequence of Calculation Operations

1) With each component of the vector:
55 (2)
Vijk (#)
W,k (2)
where 1 =0, Az, 2As, ..., one calculates (div s);;x, with the formula of Table 1.

2) Using the Poisson’s integral discretization in Table 2, one calculates ¢;;y (7).
3) One calculates the irrotational component Stk by means of its three

components:
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U
1i.jk
vli.j.k
Lz
i.j.k

using table 3.

4) One calculates the solenoidal component s, .., by means of its three

ij.k?
components:
Uik
vli. jk
w2i, jk
using table 4.

5) One calculates the derivative with time of every component u(¥), vi(?),
wi(f) (1 = 1, 2), generally indicated with f{£), using the values in ¢ and ¢ - Az,
according with table 5.

6) One calculates the value of each component  #(#), vi(?), wi(f), at time ¢ +
At, with table 6, where m is the sequence of the nodes placed on the sphere
with radius a and b, respectively for i = 1, i = & The derivatives
(predetermined) are necessary.

7) One makes the sum of irrotational and solenoidal components getting the
components of:

sintemal(t + At )

in all the points which don’t belong to the boundary. On the boundary, one
adopts the appropriate component values:

uboundary(t +At)
1+ At)

vboundary (

wboundary (t + At)

8) One applies again all the process to the obtained vector s (¢ + Af), for a
further step Ar.

8. Boundary Conditions

A finite difference method makes us free from the necessity of obtaining
an analytical solution of the reflection of waves on the boundary (in
particular on a boundary having time variable location). In fact, it is
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necessary and sufficient that the boundary is composed by points of the
network. At various times such points can be different and realize at each
time the discretization of a boundary surface. On the contrary, we have the
problem of finding out algorithms capables of talking into account boundary
effects at a discretized level. In order to do that, let us consider that in a
linear analysis, the superimposition of effects is valid. Therefore, we can
add the propagations in a field free from external actions and the effect of
boundary actions, if it is done in a proper manner.

Eq. 5 holds in the case where the medium is extended far to infinite. On
the other hand, the integral determining A@in Eq. 2 must be extended to
every elementar volume in which div s # 0. Let us consider a problem where
(fig. 2) points like A, B, C, D are on the boundaries. The points indicated
with a litte cross, like M’ and N’, on the contrary, are a virtual continuation
of the definition field.

In the case of a restraint stopping movements of points like C, nothing
forbids us to consider even points like M’ and N’. Thus, it will be
sufficient to calculate at each step the displacements of points like M, taking
into account the propagation from B, C, R, S. The divergence in C can be
obtained from the displacements in C’ (calculated) and C”’ (null) and from
those ones of other points of the boundaries (null).
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rigid bou@’
- %
A .
L unidimensional beam A
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a) - Scheme of the beam
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reﬂectcd T
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Figure 3 - Unidimensional beam with axial propagation
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The divergence in every “virtual” point is obviuosly null.

In the case of boundary with known external stresses (in particular null
ones), in addition to the displacements of points like C we need to calculate
also those ones of points like M’. The displacements of C are obtained for
propagation from those of M, N, M’ and N’. The displacements of M’ are
obtained from boundary conditions, known those of M, C, and B, supposing,
at the end of interval Af, an external action realizing the boundary
conditions. The same external action realizes a zero value of divs in every
“virtual” point.

Let us consider now the case of (rigid) boundary conditions s(f) = 0 at
points as A, B, C, D (i.e. also §=0). The displacement s at points as L, M,
N at time Af can be obtained as previously described.Points A, B, C, D
should have displacements in Af if considered free, and the boundary
condition effect is equivalent to external actions at Af on the dashed part,
which realize for them s = 0. Such external actions can’t have effects on L,
M, N at time Ar. At the beginning of a further A#, we can consider all the
points (including A, B, C, D) free from external actions. This implies the
applicability of the theory of wave propagations. We can try a clarification
referring to the case of unidimensional longitudinal waves (see fig. 3) of a
constant stress and of speed c, reflected by a rigid boundary (Af = I/c). At
time 2A¢ in L there are no effect of tipe s due to the application in A of a
reflected wave at time Ar. As 2Ar+3A¢ and subsequent intervals are
concerned, the effect of the external actions (reflected wave) are completely
described in L by the reflected wave itself. Let us come back to fig. 2. The
suggested procedure allows us to take easily into account the effects of time
variable location of the restraints. It is sufficient to impose that the conditon
s = 0, applied in points like A, B, C, D, during a convenient discrete time
interval (nAtr, with » an integer), is applied in points like P, Q, R, during
another convenient interval. Obviously » must be related to the speed of the
boundary conditions in the continuum. The case of boundary conditions
imposing particular stress values at the boundary (free boundary or known
external actions) can be approached as follows. Let us suppose that the
boundary is a plane perpendicular to x, where o; , %y, and 7, are known at
time Az in A, B, C and D, (fig. 2).

Displacements sc- , spr are calculated by means of the proposed
procedure. It is sufficient to pose:

Up» = Up + 1 Obx 21 .
U

Ucr=uc +
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1
ugr=ug + —— Opx2l ,

A+ U
T Uy — U,
s=yo 4+ 2] | LN M
A\ Ze; \Ze ( U 2] )

and so on.

It is beyond the scope of this paper to discuss the case of boundary
conditions imposing particular stress values at the boundary (free boundary
or known external actions).

Such a case is complicated by the fact that the utilized propagation refers
to displacements. For the determination of the influence in a point P at a
time ¢ + Ar of the conditions at the time ¢ on the sphere of radius vAf (where
v is the propagation speed of the kind of the considered waves), when P is
near the boundary correspondent to the time ¢, it is sufficient to take into
account an influencing sphere having points out of the boundary and at rest.

9. Conclusions

The properties of linear continuous dynamics as wave propagation have
been recalled, in particular a theory that permits the determination of the
behaviour in a point at a time from the behaviour on a concentric sphere at a
previous time. Such theory need the separation of the displacement, at each
time, into its irrotational and solenoidal part. A discretization by means of
finite differences is proposed. Such a discretization allows to determine the
evolution of dynamic phenomena, including the effect of boundary
conditions regarding the displacement, also in the case of boundary location
depending on time. The proposed discretization is a practical demonstration
of the possibility of a finite difference approach, even in the case of time
dependent boundary location. Ameliorations and reiterations are obviously
possible or necessary in order to obtain in calculations reliable results.
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