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Abstract. The first part of this paper concerns the introduction to the ba-
sics of asymptotic approach, with reference to the work of Prof. Cicala. The
explanation is supported by means of an original application. The aim is to
find an approzimate solution to the structural beam problem, emphasizing the
possibility of obtaining different models with respect to the initial assumptions
as discussed in the second part. The power of Cicala’s method lies both in the
coherence of its initial positions and in the derivation of the approximation.
The right procedure and the main characteristics of this method are carefully
described. The differences between this procedure and an alternative one are
also pointed out. The method introduces the order of smallness of every term
and, after considering specific observations, it obtains the order of magnitude
of the variables involved in connection to the specific asymptotic assumption.
Moreover rearranging the approximate solution equations it is possible to take
into account nonlinear terms if necessary. Successive approximations are cal-
culated in an original scheme that reduces the system to a "scalarized form”
according to the classifications of the unknowns. This form provides the start-
ing point for a specific connection to general mathematical theory as the third
part of this paper is meant to show in an original way. Further considerations

IPolitecnico di Torino, Corso Duca degli Abruzzi 24,10129, Turin, Italy. Phone:
+39.011.564.6829, Fax: +39.011.564.6899



136 E. ANTONA, G. FRULLA

are introduced in order to ascertain whether the subsequent approrimation is
convenient or not. Thanks to this derivation, Cicala’s work received a new and
previously unidentified merit.

Sommario. Nella prima parte di questo lavoro si presentano i concetti base
degli approcci asintotici facendo riferimento al lavoro del Cicala ed appoggian-
dosi ad una applicazione originale. Nella seconda parte si ricercano soluzioni
approssimate al problema strutturale della trave evidenziando la possibilita di
ottenere modelli differenti in funzione delle assunzioni iniziali. Si sottolineano
le potenzialita del metodo di Cicala sia per la coerenza delle posizioni iniziali
sta nella derivazione dell’approssimazione, descrivendone la corretta procedura
e le principali caratteristiche. Vengono inoltre puntualizzate le differenze in
riferimento ad una metodologia alternativa. Il metodo introduce l’ordine di
infinitesimo di ciascun termine in base a particolari osservazioni ed ottiene
Uordine di grandezza delle variabili in riferimento ad specifiche assunzioni as-
intotiche. Riorganizzando le equazioni della soluzione approssimata é possibile
introdurre termini non lineari se necessario. Successive approssimazioni ven-
gono determinate in uno schema originale che riduce il sistema in una forma
"scalarizzata” in funzione della classificazione delle incognite. Essa diventa il
punto di partenza di uno specifico collegamento con teorie matematiche gen-
erali come mostrato in modo originale nella terza parte. Ulteriori consider-
azioni vengono introdotte per stabilire la convenienza della approssimazione
successiva. Questa derivazione permette quindi di attribuire al lavoro di Cicala
valenze nuove e fino ad ora non identificate.

1 General remarks on asymptotic approaches

Asymptotic approaches are applicable to all problems concerned
with the computation of approximate solutions, when some of the
quantities, important to set out the problem, can be considered
small with respect to the remaining ones ( for instance the thick-
ness in the shells or the section dimensions in the beams). This ap-
proach, which could be ordained to establish the basic philosophy
of many issues in engineering science and in mathematical physics,
is the opposite of the axiomatic approach in which the introduction
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of specific (often ingenious) assumptions imposes constraints to the
nature of the solutions. In the author’s opinion any attempt that
in some respects refers to the concept of asymptotic approach, has
to be compared to Cicala’s formulation. The rigor and profundity
of his statement can provide a useful touchstone especially for the
following peculiar characteristics:

e the order of smallness of the unknowns (quantities or variables)
are evaluated in advance,

e the effect of the differentiation is taken into account in the
orders of smallness, with regard to the nature of the unknown
function and the asymptotic behavior,

e on this basis, the knowledge of the effective order of smallness
of each terms in each equation is obtained,

e the asymptotic approach is applied also to the boundary con-
ditions, within the problem of determining the constants in the
case of both homogeneous and not homogeneous problems.

As far as asymptotic approaches are concerned, Placido Cicala gave
a great contribution proposing a theory where not only all the ax-
iomatic approaches appear to be particular cases, but they are also
understood in their limits and implications. The results obtained
by St.Venant, Timoshenko, Kirchhoff, Mindlin and others are over-
hang at a logical and mathematical level, by means of a vision that
is based on the subsequent points: a) including the problem at issue
in a family obtained from the reduction to zero of a fundamental
parameter, b) thinking about the solution and the equation with all
its terms (and the contribution of the unknown) as the expansion
of a series of functions that constitute a complete basis in the space
of coordinates in which some dimensions are small with respect to
the others, and considering the order of smallness of each compo-
nent with respect to the fundamental parameter ( it is worth noting
that the tridimensional equations of the continuum become infinite
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in number and with infinite terms in bidimensional or unidimen-
sional spaces for the shells and beams respectively), ¢) decomposing
the systems of infinite equations in reduced systems with a finite
number of terms and up to a specific order of smallness while ne-
glecting the others. For each of those steps, Placido Cicala created
original procedures in which some surprising aspects can be found :
the possibility of evaluating the order of smallness of the unknowns
before solving the system, the semi convergent 2 nature of the se-
ries obtained in certain refining processes of the solution and so on.
The asymptotic approach can be favorably used in all the prob-
lems that have an analytic formulation maintaining its significance
whereas an intrinsic parameter becomes zero. If we compare it with
the axiomatic approach, in which the simplifications based on the
smallness of a parameter are introduced heuristicly in the form of
"a priori” assumptions, the following advantages arise: the approx-
imation level is not imposed by certain axioms on the solutions, a
sequence of approximating steps of increasing level, is determined
and the axiomatic models are emphasized; each step contributes
towards a coherent connection between the loads and the bound-
ary conditions. The problem of a St. Venant beam over an elastic
foundation can be considered as an example of some aspects of
the asymptotic approach solution [9],[3]. The situation is depicted
in fig.1 where the symbols have the usual meaning. The result-
ing equation, founded on the axiomatic behavior of the transversal
sections, is as follows:

(EIy"Y" — Hy"+ky=p, (0<z<I). (1)

The asymptotic approach is applied to this equation and it is re-
stricted to the choice of the most important terms characteristic of
certain classes of solutions consistent with the axiom. Starting from
an equation defined in a unidimensional space and deduced from an
axiom, is not the right way to reduce the tridimensional problem to
the unidimensional one. However the reported example is very sig-

2in the sense of asymptotic series or not convergent series (see [7])
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nificant. Considering that the problem derives from a family where
a parameter ¢ is going to zero asymptotically (6 multiplies the thick-
ness of the beam and it is considered as principal infinitesimal), it
is interesting to establish a classification of the importance of the
terms in the equation if considered to the asymptote. The following
assumptions are introduced: H = 0(6°), k = 0(6°), I = 0(6?), that
is H and k remain constant as the § parameter tends to zero while
I is an infinitesimal of order 2 (in the definition of the I parameter,
the section A is maintained constant as the thickness tends to zero).
Such assumptions are applied to the homogeneous case:

(E1y")" — Hy" + ky = 0. (2)

It is important to introduce the effect of the derivation in the order
of smallness of each term. This is not a mere dimensional analysis
that fixes the order of smallness of the derivative with respect to the
function once and for all (usually to the zero value). That value is
considered into the procedure in order to define the different classes
of solution. An expression as the following one is to be introduced:

y' = o(ys™?). (3)
Each term « in the previous equation is in the form :

2 = o(sms—m), (4)

Y
where m is the order of smallness of the coefficient and n is the
order of the derivative in the o term. Fig.2 shows in the m, n plane,
the representative points of the three terms of the equation. It is
possible to determine the g values that give specific approximations
to the problem, neglecting the smaller terms in the equation. The
order of smallness of the i term in the equation is such that: i =
m — gn. The straight line ¢ = constant contains the terms of the
same order with g equal to its slope. The terms positioned under
the line are more important than those on the line while the terms
above the line are less important. The inferior polygonal envelope
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of the points in the m,n plane is made up of part of straight lines
each of them representative of a g value consistent with the problem
and containing the most important terms. Given ¢ = 0 and g = 1
the solutions of the reduced problem are respectively:

Y1 = Alex\/g + Ble_x\/g; Yo = A2€x\/§ + B26_w\/§, (5)

The second equation is to be considered with the exception of a rigid
translation eliminable with the specific boundary conditions. The
two approximate solutions display four constants, the same num-
ber as in the determination of the general integral of the complete
fourth order equation. The general integral can be approximated
by setting :y = y; + y». The same result is obtained through a se-
ries expansion of the second degree algebraic equation derived from
the determinantal equation associated to the general homogeneous
equation when y = Ce* is introduced. Indeed the determinantal
equation obtained is :

EJX* —HN + K =0, (6)

with solutions:

H [ AK EJ

Introducing the order of smallness of the coefficient as assumed
previously, we get the following simplification:

Some points regarding the boundary conditions need to be high-
lighted, taking into consideration the not homogeneous term p. The
general homogeneous boundary conditions are:

Yo=0, y =0 My=0, M=0. (9)
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If the § = g(x) is the particular integral of the initial equation, the
approximate expression for the general integral is:

=7+ Ae™VE 4 Bie™VE 4 AyeVE 4 ByeVEL (10)

We can satisfy the boundary conditions by using the asymptotic
approach. Table tab.1 is obtained, evaluating the order of smallness
of the four quantities that are important in the definition of the
boundary conditions, i.e.: the displacement y, the derivative 3/, the
external bending moment M, and the external transverse load R,

Tab.1
L ly | v [ M | R |
yp | expression |y | yy | EIy) | Hy, + ... E1yY
0.8. Y1 Y1 R Y1
Yo | expression | yo | vy, | ElyY | Hy,+ Elyy
0.S. Y2 [0y | wo 0y

The boundary conditions system at x = 0,1 is as follows:

y(0) =0, 51(0) 4 y2(0) = —5(0),
y(() =0, yi(D) +y2(0) = —y(0), (11)
M(0) =0,  4/(0)+y5(0) =0,
M) =0, /() +y5 (1) =0.
The determination of the order of smallness of the terms contained
in the approximate solutions y1, yo gives the possibility to identify

the equal order terms in the approximate equations concerning the
boundary conditions. Those orders are as follows:

lim erVE/H 0(6°), lim,_; e*VF/H = 0(49),
lim e~eV/R/H 0(6°), lim, _; e *VEH = 5(§9), (12)
;]U-EI%) e?VH/ET _ 0(6%), lim,_; esVH/EI 0(8%)e \/ﬁ
lim e~=VH/BT — o(8Y), lim, e~eVH/EL _ 0(8%).
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The algebraic system in the unknowns A;, By, A%y, Bs, produces
the subsequent table (Tab.2) about the order of smallness of the
coefficients. Finite values are considered for 7(0), g(l), null values

for 4”(0), 4" (1).

Tab.2
| [ AL [ B [An [ By | |
y=01{0 [0 ]| oco | 0] 0
y=10 1010 0 [0 | O
M=0|2|2]| o0 |0]|oc
M=1] 2| 2 0 00 || oo
| (0jol 2 [2] |

In tab.2 A%y = Asexp(ly/H/EI). The order of smallness of the
unknowns is reported in the last line of Tab.2. It derives from the
difference between the order of smallness of a numerator, deter-
mined substituting the known column in the corresponding column
of the coefficients, and a denominator consisting of the determinant
of the coefficients itself. The first approximation is indicated with
a bar under the terms in the table. The first approximating solv-
ing system for the constants is decomposed in a simplified system
with two equations and two decoupled equations. Better approxi-
mations could be obtained taking into consideration further terms
other than the principal ones.

2 Derivation of the classical approximate beam
models by using Cicala’s approach

2.1 Introduction

On the basis of Cicala’s work ([11],[14],[15],[16]), a well defined
procedure comes out. It defines, in conjuction with the specific
asymptotic approach, a certain approximate solution to the struc-
tural both bidimensional ([4]) and unidimensional problem. First
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Fig.1

Fig2
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of all it is important to define the significance of the asymptotic
approach from Cicala’s point of view, in order to avoid confusion
about the terms and the concepts. Afterwards the right procedure
will be clarified using an application. The structural beam problem
supplies a good example to show how it is possible to obtain the
classical linear model and the nonlinear Von Karman approximation
from a well defined group of equations. No aprioristic assumptions
are introduced apart from the asymptotic one. Cicala’s approach
assigns a certain order of smallness to the variables and to the pa-
rameters involved in the problem and with respect to particular ra-
tios of the physical dimensions of the structural element. Allowing
for these definitions it is possible to classify the structural elements
as indicated in [11],[12] and to define an approximate model pecu-
liar for the single category. The order of smallness of the variables
is worked out by the known magnitude of the coefficients of the
considered equations. Consequently the starting equations are sim-
plified neglecting the high order terms and the final approximate
model is obtained. This procedure gives the possibility of intro-
ducing nonlinear terms of the same order as the principal ones in
the model, without the need for a new execution. Every simplifica-
tion is applied with respect to the order of the specific terms in the
equation considered. In this case the initial relations are complete
and the simplifications are introduced at the end of the procedure.
In the subsequent sections, Cicala’s approach will be applied to the
derivation and justification of the linear (Eulero-Bernulli) and non-
linear (Von Karman) approximate beam models. Some interesting
conclusion will be pointed out.

A different procedure([20],[21],[22],[23]) is summarized for the
derivation of asymptotic approximate structural models. It starts
by defining of the equilibrium equations in terms of displacements
and the characteristic parameters of the elastic behavior of the ma-
terial. Not dimensional coordinates and displacements are intro-
duced in order to not dimensionalize the equations. A particular
order of smallness is assigned to the located not dimensional pa-
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rameters depending on the coherent and reasonable result obtained
at the end of the procedure. Expanding the displacements in series
of the small parameter and substituting them into the equilibrium
equations, a series of problems with different degrees of approxima-
tion are worked out. Solving the Py, P, - - consecutive approximate
problems, the displacements are calculated with an increasing level
of approximation. An important paradox arises: starting from the
linear system the approximate model concerns transversal displace-
ments of the same order as the thickness, while starting from the
non-linear system, under the same level of applied loads and the
same boundaries, the approximate model involves transversal dis-
placements of the same order of the thickness as the previous one.
The cited authors observed that the linearized system is just a sim-
plification. For this reason the conclusion could be incorrect. The
same observation is also reported in a recent paper [24] together
with any other justifications. A comparison with Cicala’s proce-
dure could be fruitful.

2.2 The asymptotic approach: Cicala’s approach

The methodology based on the work of Prof. Cicala as reported
in [11],[12],[13] for the unidimensional case and in [8],[9],[10] for
the bidimensional one is described in the present section. The uni-
dimensional configuration is considered here even though the ap-
proach is quite general and can be applied to different situations.
The procedure can be summarized by the following main steps [5].

a) The definition of the initial equations: the strain-displacement
equations and the local equilibrium equations are deduced
from the tridimensional theory in its complete form according
to [11],[14],[15],[16]. The basic assumption concerns the small-
ness of the strain sustained by the structural element, in order
to remain in the elastic and reversible range. For this reason
the constitutive stress-strain equations are limited to the clas-
sical linear ones. No conditions are imposed on the magnitude
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of the displacements and rotations that are the right unknowns
of the problems. The strain-displacement equations are ex-
pressed in terms of the elongation and rotation of a principal
line over which a local displacement is superimposed. This in-
troduces some simplifications and separates the contribution
of the global deformation from the contribution of the local de-
formation in the general expressions. The equations indicated
here are considered as a whole and no substitution is made in
order to try to express them in terms of the displacements.

b) The order of smallness of the variables involved is defined.
All the variables are connected to the small parameter ¢ that
gives the level of the maximum tension strain in the structural
element. It is possible, as indicated in [12], to classify the
structures on the basis of the order of that parameter.

c¢) Once the order of each coefficient in the equations has been
established, it is possible to evaluate the order of smallness of
the unknowns using a procedure reported in [1] and also in [17].
The order of smallness of the variable assumed as input data
is introduced according to the classification of the structures
and according to certain evaluations of the global behavior of
the structure ([18] ).

d) At this point each term in the equations considered has its
specific order and they can be compared one another. The
most important terms are collected and the others neglected
in order to obtain an approximate expression for each equation.
The evaluation of the important terms is extended also to the
nonlinear ones. If nonlinear terms are of the same order as the
principal ones they have to be considered in the approximate
equation.

This procedure gives the possibility of taking into account all the
terms necessary to build a consistent approximate model. Arbitrary
simplifications are avoided because of the comparison of the order
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of the different terms. The system is more tractable and it doesn’t
oblige the operator to manage cumbersome equations. The approx-
imate model is consistent with the conditions introduced before and
it also gives an idea of the field of applicability of the approxima-
tion. Different approximate solutions are obtained changing the
initial conditions. One more important concept, arising from Ci-
cala’s work, is the length of variation. In the application of the
procedure , it is necessary to give an order of magnitude to the
derivative operators as we did in the simple example of the previ-
ous section. Supposing that W' is the derivative of the variable W
with respect to the coordinate x, and using L for the characteristic
length of the structural element, it can be stated : W' ~ W/L,,
L, = Le*. L, is the length of variation of the variable W for that
class of solutions ([10],[16]). The class of solution is characterized
by the exponent a. In the subsequent derivation the value o = 0
is assumed referring to the longitudinal coordinate. It concerns the
case when the structural element is considered to be far from the
constraints and from the points of loading application, and when
variations of the section characteristics are smooth. All these situ-
ations have to be studied by means of classes of solutions different
from than those described in this paper.

The procedure is applied to the definition of an approximate
model of an isotropic initially straight beam considered with a
solid or closed form cross section. A summary of the derivation
is reported in [5].

For the beam-wise structures with massive section, the order of
the ratio between the transverse dimension and the longitudinal
dimension is €% ([12]). This also means that if the elastic charac-
teristics are of the same order, the bending stiffness is of the same
order as the torsional stiffness. Avoiding the fractional exponent,
all the orders of magnitude are counted twice. For this reason in
the case under consideration the classification parameter has an
h/L = €' value. Assuming that the order of the variations of cur-
vature of the structure is the same as the thickness (e!), the order of
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the resultant section moments is €> with an order €2 for the bending
stress o.

If the resultant axial load has to be of the same €> order as the
other resultant quantities, the elongation of the reference line, ¢g ,
is forced to assume the order €3. In this case the tensile stress is of
higher order with respect to the bending one and can be neglected
in the derivation of the model. The resultant behavior is typically
not-extensional (see [5]).

A different classification is obtained if the torsional load is of
higher order than before because of the combination of the transver-
sal load and of the deflection. Regarding the first situation de-
scribed in [5], the torsion problem is reduced to the St.Venant
approximation, the longitudinal strain is reduced to the bending
terms, and the 011, 099, 012 stresses can be neglected because of an
order higher than the others. The shear effect is neglected because
the corresponding stresses are of an order higher than the bending
stresses. The stresses ooy, 092 are reduced to the torsional and warp-
ing terms. In this way the section is supposed to be undeformable
in its plane. If the resultant loads over the section are considered,
the equations are reduced to:

Noo+p0o=0, Niog+pi=0, Nog+p2=0, (13)
Mio+aq = Nay Moo+ q=—Ny, Moo+ qo=0,

with the resultant loads and moments such that: N, = €>; M, = €°.

The approximation consists of the Eulero-Bernoulli case.
With the same classification of the variables, the elongation e
can reach the order €2. The equations are modified as follows:

2600 = 2(ep+Awi&o—Aws&y), 2601 = w1 —Awpéz, 2602 = g 2+Awpé;.

(14)
The resultant loads and moments become: Ny = €*; Ny 5 = €%, M, =
€®. The equilibrium equations are reduced to:

Noo+po =0, Nig+ Nows+p1 =0, Nyg— Nowi+p2=0,
Mo+ ¢ = Ny, Mo+ g2 = — Ny, Moo +qo =0, (15)
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with the bending moments of the same order as the torsional mo-
ment. The relations are now nonlinear due to the presence of a
nonlinearity of the Von Karman type. It is necessary to make some
remarks regarding the order of the variables involved. Expressing
the elongation and the curvatures of the reference line with respect
to the three displacements wu,v,w and a rotation ¢ in the initial
triad, the two already mentioned conditions give the classical lin-
ear beam model and the classical nonlinear beam model. In fact as
reported in [17], and in [5], the input variables are:

eg = u,3+1/2(v’28—|—w’28)+---,

Wo = Qst-r, (16)
w = _w,ss+"':
w2 e U,ss+"'

If the transversal displacements have an order of magnitude higher
than the section dimensions, that is : u = €;v,w = €29 = €,
the result is : ey = €;w, = €2, and we get the same relations
as in the linear model. It is important to note that the in plane
displacement is of one order higher than the transverse one. If the
transverse displacements are of the same order as the transverse
dimension of the beam, that is: v = €;v,w = €';¢ = €', then:
eg = €2,w, = €'. The approximation corresponds to a nonlinear
model.

The second situation described in [5] is concerned with a different
approximation. The main difference with the previous one consists
in the introduction of the shear effect. The shear stresses are as
important as the torsion stresses which are no more distributed
according to the assumptions of S.Venant. The beam model is in
the Timoshenko complete form and the last resultant equilibrium
equation contains the effect of bending moments.
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2.3 Different approach

A brief description of the procedure ([20]) is reported. The reader
is addressed to the cited references for details. This method can be
summarized through the following steps:

a) Strain-displacement equations, constitutive equations and equi-
librium equations are defined as a choice of the operator in the
linear or the nonlinear sense (cited references). The equilib-
rium equations are expressed in terms of the displacements by
substitution of the strain-displacement and constitutive equa-
tions. The resulting equations are considered as starting points
in the procedure.

b) The relevant variables are introduced in order to not dimen-
sionalize the quantities involved in the problem. The position
coordinates of each point of the element are not dimensional-
ized with respect to the corresponding geometric dimension of
the element itself. An order of smallness is given to some of
these ratios with respect to the shape ratio. It is defined as
the ratio between the transverse and longitudinal dimension
of the element.

¢) The starting equations are not dimensionalized by introducing
the ratios defined previously. At this stage certain peculiar not
dimensional parameters are identified.

d) The displacements are expressed in series of a small parameter
as: V = VO04eVi4+e2V 24, .. and put into the equations defined
in the previous step. Collecting the terms of the same order,

a sequence of approximate problems as Fy,P;,--- is defined
and their solution gives rise to different approximate structural
models.

The expressions of the strain components limited to the linear ap-
proximation are:

1
€ii = Ui, €ij = B (wij+uj;), (17)
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with 7,5 = 1,2,3 and without any summing convention. The u,
are the components of displacement in a Cartesian system where
the z, are the coordinates. The linear expressions are used only
for convenience in order to clarify the procedure as in [20] and to
derive the classical linear model. The constitutive relations in an
isotropic and elastic case are:

o1 = (A4 2p)err + Aega + Aess, O12 = 2ji€12,
092 = Aerr 4 (A 4 2p)€x + Aess, 013 = 2/1€13, (18)
033 = €11 + Aéaa + (N + 2p) €33, 093 = 2[1€23,

where A, p are the Lamé parameters. The linear equilibrium equa-
tions are:

O11,1+0212+031 3+ f1 = 01210222 +032 3+ f2 = 013,1+023,2+033,€+,};3 =0.
19

Substituting the strain-displacement relations in the constitutive
relations and then in the equilibrium equations, the expanded form
of the starting equations can be obtained .

Restricting,as an example, the structural behavior to the 1 — 3
plane with uq, uz and f3 active and without variation along the -
coordinate, the problem is reduced to :

p(ur a1 + wss) + (w11 + usas) + AMuin +uss) =0,
p(us 11 + usss) + (w1 + usz3) + AMuias + usss) + f3=0. (20)
The referring value of the displacements is indicated with W for
us, V for us and with U for u;, while L is the reference length
and h the reference thickness.The subsequent not dimensional vari-

ables are defined as: 13 = uz/W,ty = up/V,ty = /U, T3 =
x3/h,T1, Ty = x1,72/L, f3 = f3/F3,

e [t1,11 + (L + B)ar ] + ey(1 + B)ugz + 133 = 0,(21)
62 [(1 + 5)1_61713 + 6"/@3,11] + (2 + B)E’Y’L_ng,g + eva(f;; = 0.

The not dimensional equations are derived emphasizing some
not dimensional parameters, such as: § = N u, v = W/U, € =
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h/L, o« = hF3/p, ¢ = h/W, as reported in [21]. At this point no
hypotheses are introduced about the order of smallness of the not
dimensional parameters. Considering such as in [20] that U = €WV,
W = h (this condition is equivalent to introducing the transverse
displacement of the same order as the thickness and the in plane
displacement of an order higher than the transverse displacement)
and a = €*, the not dimensional equations are in a form suitable for
the asymptotic derivation. The approximate problems of different
level, can be worked out:

layn + 1+ B)un] + (1+B)ass + iz = 0, (22)
€ [(1+ B)uy13 + asq11] + (2+ B)usss + elfs = 0.

Assuming, as to the displacements, that the expansion is as follows:
Uy = uy + eup + €up + ..., (23)

with k£ = 1, 3, and substituting them into the not dimensional equa-
tions, we get

o PV level:

(1+ 5)“3,31 + U(1),33 =0 Ug,33 =0; (24)
o P! level:

(1+ 5)“:1%,31 + U%,gg =0 Uzll,,33 =0; (25)
o P? level:

(1+ 5)“?,11 + Utl),n + (1 + B)Ug,:ﬂ + Ui33 = 0, (26)
(1+ 5)“?,13 + Ug,n +(2+ 5)“3,33 = 0,

and so on. The solution to the problem PP is a displacement of
Kirchoff-Love with a component solution of a bending problem and
a component solution of a membrane one ( see [20] for details of
complete form problem).

Solving the consecutive approximate systems on the basis of the
corresponding boundary conditions not reported here, the behavior
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of the displacements is found to be the same as in the linear ex-
pected case. In the cited reference the same assumptions are used
in conjuction with the nonlinear tridimensional equations in order
to introduce the Von Karman nonlinearity in the model. This ap-
parent paradox is justified in [23] where the classical linear model
is valid if the transverse displacement is of one order higher than
the thickness and the transverse load is higher by one order than
the one considered at the beginning. The introduction of the cor-
rect hypotheses and the right terms in the approximate models is
made possible by a process of rearranging the procedure using each
time different starting equations and comparing the different re-
sults. The starting equations are introduced as in the intention
of the operator and the results are correct if and only if all the
necessary terms are taken into account from the beginning.

A discussion of the results is necessary in order to clarify the
indicated paradox. It is obvious that when using a linearized sys-
tem deduced from a non-linear one, arbitrary simplifications are
introduced that influence the final solution. This cannot be an ef-
fective explanation for the paradox. In fact, the first approximation
of a linearized system does not usually coincides with the first ap-
proximation of a non-linear system, and the approximate linearized
solution is not representative enough of an approximate solution for
the non-linear case. This is true only in specific cases and under
specific conditions (as can be verified using a very simple algebraic
system). The field of applicability in the linearized situation cannot
be considered as valid because of a priori neglecting of some terms.
Its validity is derived by the linearization assumptions. For these
reasons the paradox is not effective.

3 Cicala’s approach and the asymptotic devel-
opment convenience

The general perturbative expansions in series of a small parameter
are useful to obtain some results both qualitative and quantitative,
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even if they could be divergent ([25], [27]). It is not possible to
know a priori whether such a kind of expansion is convergent or
not. This can be done only after computing the subsequent term.
Considering now a very simple example ([25]) such as :

f=1+¢f3, (27)
the solution is in the form:

f(z,€) = folx) +efi(x) + Efo(x) + ..., (28)

where the f, are linearly independent functions obtained through
the usual procedure as:

fo=1Li=f=1/,=3ffi=3f=3fl+3fff =12. (29)

The approximate solution is: f =1+ e+ 3€® + 12€3 + .. ..

A comparison with Cicala’s approach ([10],[4]) can be done. The
first step is the determination of the ”fundamental” solution to the
problem. It derives from the classification of the unknowns that
identifies the most important terms in each equation of a general
system L(g) = 0. It is reduced to a subsystem Li;(g1) = 0 (the
fundamental one) where the g; are the principal unknowns in the
ng1 principal equations. The general system is subdivided into a
specific form (that Cicala indicated as ”scalarized form”) such as:

if the number of equations is the same in the various groups, or
such as:

Ln(gl) + ...+ ng(gl,gQ) +...+ ng(gl,gg, ) +...= 0, (31)
Loi(g2) + ...+ L3i(g2,93) + ... =0,

. ey

where at any step the number of unknowns and consequently of
equations are modified. The different groups contain terms of the
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same order and of one order higher than the previous. The scalar-
ization is a logic consequence of the classification of the unknowns.
From the system Lq; the fundamental solution g is obtained. A suc-
cessive approximation is calculated considering the terms of one or-
der higher than the fundamental ones that is considering the group
L5 (referring to the first kind) in the solution. The values of the
g unknowns obtained in the previous step are assigned to the un-
knowns contained in that group as showed by:

Li1(g") + L12(g) = 0, (32)

where ¢’ is the new approximation. Another approximation ¢” is
obtained as follows:

L11(9") + Li2(g') + L13(g) = 0 (33)

and so on. The successive approximations can be obtained from a
system written in the form:

Li(9) + Lia(3) =0,  Lu(g") + Lia(g') =0, (34)

without any loss of information. Lj, contains all the successive
terms. With reference to the initial simple example, Cicala’s pro-
cedure leads to fy = 1 as the fundamental solution to the equation
with the unknown of order 0. The scalarization produces the rela-
tion: Lis = ef3. The successive approximations are :

fO = 1>
ff= 14efd =1+
"= 1+e(fP=14e+32+---, (35)

f" = ()P =14+e+33+ 1268+ .

The solution corresponds to a power series in € as the previous one
and as observed by Cicala [10]. It is interesting to observe that
the successive approximations are obtained using a point map ([6])
such as:

Ups1 = F + Plug,€), Plug,€) = eus, (36)
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with F' representing the fundamental solution. It is advisable to
indicate whether the computation of a further approximation is
convenient or not. Assuming @ as the exact solution such that:
u = F + P(u,€), the successive approximation are :

fL:uO—l—lO:Ul—l—ll=U2+l2=...=UN—|—lN (37)
and:

Uy = F7u1 - F+P(U0,€),U2 = F+P(u176)7 - UN = F+P(UN—17€)'
(38)
Substituting then into the relations we get:
'U,l—f—ll = F—f—P(UO—I—lo,E) :F+P(U0,€>+8P(U0,6)l0,
ug+1lo = F+ P(uy+1l,e) = F+ P(uy,€) + OP(uy,€)ly,
, (39)
uy + Iy = F+P(UN_1+ZN_1,6) =F+P(UN_1,6)—|—6P(UN_1,6)IN_1,

and therefore we obtain a series of successive errors:

ll = aP(UO, 6)[0, (40)
lo = O0P(uy,€)ly = 0P(uy, €)0P(ug, €)ly,

13 = 8P(u2, 6)[2 = 8P(u2, 6)8P(u1, €>8P(U0, 6)l0,

lN = aP(uN_l, 6>ZN_1 = (9P(UN_1, e)@P(uN_Q, 6) ce

8P(u1, 6)8P(u0, E)IO = KNlo.

The error tends to reduce if and only if the absolute value of Ky is
less than the unity: | Ky |< 1. In this case the calculation of suc-
cessive approximations is convenient, otherwise the error increase
and the solution diverges. If this is the case the solution is limited
to the fundamental. An extension of the general multidimensional
situation is possible. The symbol 0 assumes the meaning of Ja-
cobian of the transformation. The error is diminishing if all the
eigenvalues of the Jacobian matrix are in modulus less than the
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unity ([26], [19]). In this case the calculation of the successive ap-
proximation is convenient. The Liapunov exponent is immediately
calculated:

A= Jim i AY | (41)
with \; representing the i-th eigenvalue of the Jacobian at the N
step as indicated. If the condition: A; < 0 holds for all the A;, the
solution is convergent. If only one of the exponents is higher than

zero the solution is divergent.
A simple linear bidimensional case follows. The system is:

(1+ 6%z + 20y =1, oz + (3+ )y = —0, (42)
it is a linear system with coefficient function of the small parameter.
The exact solution is:

. 340+ 267 _ —6(2467)
T340+ 0+e YT 375100100

Allowing for Cicala’s definition its fundamental solution turns
out to be:

(43)

r=1, x4+ 3y=—9I, (44)

(5)0 - (—§/3 193) (—15> = <_215/3>- (45)

The successive approximation is obtained from the scalarization as

follows:
(:;) N (—215/3> * <o_3(/s; 252/52—55/3> <Z> (46)

In this case the Jacobian is independent of the actual value of the
unknowns ( since the system is linear). Table 3 and 4 can be ar-
ranged (A(V indicates the eigenvalue at the first step).
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Tab.3
5 AD exact a° z 2" 2"
—0.02 —0.0004 1.0001 1 1.0001
0.0069 0.0134 0.0133 0.0134
—0.05 —0.0023 1.0009 1 1.0008 1.0009
0.0181 0.0339 .0333 0.0339 0.0339
—0.1 —0.0086 1.0038 1 1.0033 1.0038

0.0386  0.0691 0.0667 0.0690 0.0691

Tab.4
5 AW exact 20 x' x" z"
0.02 —0.0004 1.0001 1 1.0001
—0.0064 —-0.0132 —-0.0133 —0.0132
0.05 —0.0028 1.0008 1 1.0008
—0.0147 —-0.0328 —0.0333 —0.0328
0.1 —0.0167 1.0029 1 1.0033 1.0029

—0.02 —0.0646 —0.0667 —0.0646 —0.0646

Different values are given to the parameter ¢ in order to show
the behavior of the system, but it is important to notice that the
asymptotic developments are significative only for small values of
the parameter itself. A tentative criterium can be introduced: The
Asymptotic Development Convenience. F(z,d) =0 is a lin-
ear system depending on a small parameter § with n equations in n
unknowns. The xy is the fundamental solution in the sense of Ci-
cala and it is obtained from the subsystem Fii(xo,d) = 0 after the
classification that transforms the system into the scalarized form
as:

F(x,0) = F11(z,0) + Fio(x,6) + Fi3(z,0) + - - -, (47)

assuming that the Fi1(xg,d) = 0 contains all the unknowns of the
wiatial one F'. The successive approzimations are calculated from
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the sequence:

Fu(241,0) = = Fio(2r,0) = 2p1 = —F Fia(2r, 6) = F(ay, 0),
(48)

that is convergent to the exact solution only if, at each step, the

eigenvalues of the Jacobian of F are in modulus less than unity.

If this is the case the asymptotic procedure originates a better
approximation at each step. Exceptional cases originated under
specific conditions are out of the scope of this preliminary analysis
which is limited to the well defined ones. Other conditions are still
under investigation and are not dealt with in this paper.

4 Concluding remarks

Cicala’s asymptotic approach is presented and described with the
help of an application to the beam structural problem. The beam
approximate models are derived and the approximations are jus-
tified. The general procedure is compared to a different one and
the obtained results are comparable if and only if the initial as-
sumptions are the same. It is important to note that the initial
hypotheses have to be the same not only with respect to the order
of the displacements and other variables but also with respect to
the same starting equations. While the first method allows to take
into consideration all the terms of the same order (linear and non-
linear) included in the complete initial equations by checking their
order of smallness, the different cited procedure can start with dif-
ferent initial relations not always representative of the phenomena.
After a comparison between the different final results, this latter
procedure can realize the discrepancies and modify the starting
equations accordingly, but only at the end of the procedure. In
Cicala’s approach the operator has to wonder whether the terms
considered in an approximate model are complete or whether there
are some other terms important for that problem. All the funda-
mental terms, linear and nonlinear, are collected consistently with
the initial assumptions: none of them is forgotten. The concept of
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the length of variation is also an other very important aspect in
Cicala’s derivation. It enables the operator to deal with different
classes of solutions with regards to different variation characteris-
tics of the problem. A new connection with general mathematical
theory is found thanks to Cicala’s derivation. Quite a new cri-
terium is defined proving the convenience of successive asymptotic
approximations.

Contributions

The general structure of the paper was arranged by the two authors
together in order to give some ideas about the work of Prof. Ci-
cala. The different aspects were reconsidered with the aid of specific
original applications and the key points were emphasized as summa-
rized in the conclusions. The first author was mainly involved into
the definition of the first part with the general presentation of the
methodology and the indication of the specific point of view consid-
ered. The second author was mainly involved into the development
of the second part and into the original formulation presented in
the third part, that is also a part of his PhD activity.
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